martes, 28 de marzo de 2017

HISTORIA DE LA LÓGICA

HISTORIA DE LA LÓGICA

La historia de la lógica documenta el desarrollo de la lógica en varias culturas y tradiciones a lo largo de la historia. Aunque muchas culturas han empleado intrincados sistemas de razonamiento, e, incluso, el pensamiento lógico estaba ya implícito en Babilonia en algún sentido, la lógica como análisis explícito de los métodos de razonamiento ha recibido un tratamiento sustancial solo originalmente en tres tradiciones: la Antigua China, la Antigua India y la Antigua Grecia.
Aunque las dataciones exactas son inciertas, particularmente en el caso de la India, es probable que la lógica emergiese en las tres sociedades hacia el siglo IV a. C. El tratamiento formalmente sofisticado de la lógica proviene de la tradición griega, especialmente del Organon aristotélico, cuyos logros serían desarrollados por los lógicos islámicos y, luego, por los lógicos de la Edad Media europea. El descubrimiento de la lógica india entre los especialistas británicos en el siglo XVIII influyó también en la lógica moderna.

Antigua Grecia
En la Antigua Grecia, emergieron dos tradiciones lógicas opuestas. La lógica estoica estaba enraizada en Euclides de Megara, pupilo de Sócrates, y con su concentración en la lógica proposicional es la que quizás esté más próxima a la lógica moderna. Sin embargo, la tradición que sobrevivió a las influencias de culturas posteriores fue la peripatética, que tuvo su origen en el conjunto de obras de Aristóteles conocido como Organon (instrumento), la primera obra griega sistemática sobre lógica. El examen de Aristóteles del silogismo permite interesantes comparaciones con el esquema indio de la inferencia y la menos rígida discusión china.
Se considera a Aristóteles el fundador de la lógica como propedéutica o herramienta básica para todas las ciencias. Aristóteles fue el primero en formalizar los razonamientos, utilizando letras para representar términos. También fue el primero en emplear el término «lógica» para referirse al estudio de los argumentos dentro del «lenguaje apofántico» como manifestador de la verdad en la ciencia. Sostuvo que la verdad se manifiesta en el juicio verdadero y el argumento válido en el silogismo: «Silogismo es un argumento en el cual, establecidas ciertas cosas, resulta necesariamente de ellas, por ser lo que son, otra cosa diferente». Se refirió en varios escritos de su Órganon a cuestiones tales como concepto, proposición, definición, prueba y falacia. En su principal obra lógica, los Primeros analíticos, desarrolló el silogismo, un sistema lógico de estructura rígida. Aristóteles también formalizó el cuadro de oposición de los juicios y categorizó las formas válidas del silogismo. Además, Aristóteles reconoció y estudió los argumentos inductivos, base de lo que constituye la ciencia experimental, cuya lógica está estrechamente ligada al método científico. La influencia de los logros de Aristóteles fue tan grande que en el siglo XVIII Immanuel Kant llegó a decir que Aristóteles había prácticamente completado la ciencia de la lógica.
En Europa, Aristóteles fue el primero en desarrollar la lógica. La lógica aristotélica fue ampliamente aceptada en ciencias y matemáticas y permaneció en uso amplio en Occidente hasta principios del siglo XIX. El sistema de lógica de Aristóteles fue responsable de la introducción del silogismo hipotético, de la lógica modal temporal, de la lógica inductiva, así como de términos influyentes tales como términos, predicables, silogismos y proposiciones. En Europa durante el último período de la época medieval, se hicieron grandes esfuerzos para demostrar que las ideas de Aristóteles eran compatibles con la fe cristiana. Durante la Alta Edad Media, la lógica se convirtió en el foco principal de los filósofos, que participarían en análisis lógicos críticos de los argumentos filosóficos, a menudo utilizando variaciones de la metodología del escolasticismo. En 1323, William de Ockham influyente Summa Logicae fue publicado. En el siglo XVIII, el enfoque estructurado de los argumentos había degenerado y había caído en desgracia, como se muestra en el juego satírico de Holberg Erasmus Montanus.
Los filósofos estoicos introdujeron el silogismo hipotético y anunciaron la lógica proposicional, pero no tuvo mucho desarrollo.Los filósofos estoicos introdujeron el silogismo hipotético y anunciaron la lógica proposicional, pero no tuvo mucho desarrollo.
Por otro lado, la lógica informal fue cultivada por la retórica, la oratoria y la filosofía, entre otras ramas del conocimiento. Estos estudios se centraron principalmente en la identificación de falacias y paradojas, así como en la construcción correcta de los discursos.
En el periodo romano la lógica tuvo poco desarrollo, más bien se hicieron sumarios y comentarios a las obras recibidas, siendo los más notables: Cicerón, Porfirio y Boecio. En el período bizantino, Filopón.
Hasta el siglo XIX, la lógica aristotélica y estóica mantuvo siempre una relación con los argumentos formulados en lenguaje natural. Por eso aunque eran formales, no eran formalistas. Hoy esa relación se trata bajo un punto de vista completamente diferente. La formalización estricta ha mostrado las limitaciones de la lógica tradicional o aristotélica, que hoy se interpreta como una parte pequeña de la lógica de clases.
A través del latín en Europa occidental y de distintas lenguas orientales como el árabe, armenio y georgiano, la tradición aristotélica fue considerada de forma especial para la codificación de las leyes del razonamiento. Solo a partir del siglo XIX cambió este enfoque.

Antigua India
Dos de las seis escuelas indias de pensamiento están relacionadas con la lógica: Nyāya y Vaisheshika. Los Nyaya Sutras de Aksapada Gautama constituyen el núcleo de textos de la escuela Nyaya, una de las seis escuelas ortodoxas de filosofía hindú. Esta escuela realista trabajó con un rígido esquema de inferencia de cinco miembros que engloba una premisa inicial, una razón, un ejemplo, una aplicación y una conclusión. La filosofía budista idealista se convirtió en la principal oponente de los Naiyayikas. Nāgārjuna, el fundador del camino intermedio Madhyamika, desarrolló un análisis conocido como "catuskoti" o tetralemma. Esta argumentación de cuatro aspectos examinó y rechazó sistemáticamente la afirmación de una proposición, su negación, la afirmación conjunta y negación, y finalmente, el rechazo de su afirmación y negación. Pero fue con Dignāga y su sucesor Dharmakirti con quienes la lógica budista alcanzó su mayor altura. Su análisis, centrado en la definición de la implicación necesariamente lógica, "vyapti", conocida también como concomitancia o penetración invariable. A este fin, fue desarrollada una doctrina conocida como "apoha" o diferenciación. Comprende lo que se podría llamar la inclusión y exclusión de propiedades definitorias. Las dificultades concernientes a esta empresa, en parte, estimularon a la escuela neoescolástica de Navya-Nyāya, que introdujo un análisis formal de la inferencia en el siglo XVI.
En la India, las innovaciones en la escuela escolástica, llamado Nyaya, continuaron desde la antigüedad hasta principios del siglo XVIII con la escuela Navya-Nyaya. Hacia el siglo XVI se desarrollaron teorías semejantes a la lógica moderna, como "la distinción entre sentido y referencia de nombres propios" de Gottlob Frege y su "definición de número", así como la teoría de "condiciones restrictivas para universales" anticipando algunas de las Desarrollos en la teoría de conjuntos modernos. Desde 1824, la lógica india atrajo la atención de muchos estudiantes occidentales y ha influido en importantes lógicos del siglo XIX como Charles Babbage, Augustus De Morgan y George Boole. En el siglo XX, filósofos occidentales como Stanislaw Schayer y Klaus Glashoff han investigado la lógica india más ampliamente.

Antigua China
En China, un contemporáneo de Confucio, Mozi, "Maestro Mo", es considerado como el fundador de la escuela Mohista (mohísmo), cuyos principios están relacionados con temas como la inferencia válida y las condiciones de las conclusiones correctas. En particular, una de las escuelas que siguieron al mohísmo, los lógicos, es considerada por varios expertos como la primera que investigó la lógica formal. Desafortunadamente, debido a la rígida normativa legal durante la dinastía Qin, esa línea de investigación desapareció de China hasta la introducción de la filosofía india por parte del budismo. La traducción y la investigación escolar en lógica fue reprimida por la dinastía Qin, acorde con la filosofía legistaDesam. En India, la lógica duró bastante más: se desarrolló (por ejemplo con la nyāya) hasta que en el mundo islámico apareció la escuela de Asharite, la cual suprimió parte del trabajo original en lógica. A pesar de lo anterior, hubo innovaciones escolásticas indias hasta principios del siglo XIX, pero no sobrevivió mucho dentro de la India colonial. El tratamiento sofisticado y formal de la lógica moderna aparentemente proviene de la tradición griega.
El filósofo lógico chino Gong Sunlong (325-250 AEC) propuso la paradoja "Uno y uno no pueden ser dos, ya que ninguno se convierte en dos." [24] En China, la tradición de la investigación académica en la lógica, sin embargo, fue reprimida por La dinastía Qin siguiendo la filosofía legalista de Han Feizi.

Edad media:
La Lógica Medieval se basa en el trabajo de Aristóteles, es recogida por los sacerdotes y cultivado mayormente en los conventos, escuelas y universidades de Europa Occidental.
Los estudios de los lógicos profesionales estuvo dirigido al comentario del Organon destacando Pedro Hispano y Juan Buridan estableciendo que “de Dos premisas contradictorias, se puede deducir cualquier conclusión”.

Edad Moderna:
La época moderna marca el inicio de la Lógica Matemática. El precursor de esta lógica es  Guillermo G. Leibniz quien introdujo el cálculo lógico llamado “Mathesis Universalis” que fuese operacionalmente  mecánico, inequívoco y no cuantitativo que permitiera acabar con todas las disputas y controversias. también desarrolló el cálculo de la Lógica Proposicional. Euler es otro de los precursores de la Lógica Matemática, introdujo los diagramas que llevan su nombre para ilustrar geométricamente los silogismos.

Edad Contemporánea:
El siglo XIX se caracteriza por el nivel de abstracción que alcanza la lógica matemática destacando Hamilton sobre la cuantificación de todo o alguno. Augusto de Morgan considera que la base, común de la lógica radica en las relaciones de inclusión o exclusión parcial o total entre clases; George Boole construye la Teoría de Clases. Venn aclara los procedimiento de Boole representando los procesos algebraicas en los diagramas de Venn. Giussepe Peano da a la lógica el nombre de lógica matemática creando un lenguaje simbólico para las demostraciones matemáticas propuso el uso de los puntos auxiliares y un modo de simbolizar los cuantificadores. Bertrand Russell en su obra “Los Principios de la matemática” propone que las matemáticas puedan reducirse a una rama de la lógica generando en su obra investigaciones sobre la inferencia y sus respectivas aplicaciones.
En el siglo XX la lógica simbólica, que tanto debía a la matemática había desembocado, desde principio del siglo, en cuestiones irresolubles. Esto produjo un paulatino alejamiento de la lógica con respecto a la matemática, así como un deslindamiento de las competencias respectivas. Por un lado, la lógica, alejándose del excesivo formalismo y simbolismo, empieza a ocuparse y preocuparse de problemas semánticos, es decir de las relaciones entre los símbolos y lo que expresan. Se producen así un acercamiento de la lógica a la lingüística y a la epistemología. Filósofos como L. Wittgenstein, R. Carnap inicialmente bajo la influencia formalista y logicista, dan un viraje en su filosofar orientándose hacia preocupaciones lógico - semántica.



No hay comentarios:

Publicar un comentario

Factoriales

Numeros Factoriales: Objetivo: El objetivo de este programa es que al ingresar la cantidad de números que desea que el programa enseñe es...